خصائص النهايات
تعريف النهايات
النهايات أو النهاية هي من المفاهيم الأساسية في علم التفاضل والتكامل، الذي نشأ لوصف الكيفية التي تتغير فيها الأشياء.[1] وتستخدم النهاية لمعرفة سلوك الاقتران عندما تقترب قيم المتغير المستقل س من عدد معين، ويعبّر عنها رياضيا بالصيغة التالية:[1]
تُقرأ نهاية الاقتران ق(س) عندما تقترب قيم س من أ، حيث أ ∈ح، وح هي مجموعة الأعداد الحقيقية. وحتّى تكون هذه النهاية موجودة، فيجب أن يكون الإقتران ق(س) مُعرّفاً على فترة مفتوحة قصيرة الطول، على الصورة (أ-جـ، أ+جـ)، وتحوي العدد أ، وحيثُ جـ عدد حقيقي صغير جداً. علماً أنّه ليس من الضرورة أن يكون ق(س) مُعرّفاً عند العدد أ نفسه. وحتّى يتحقق هذا الشرط، فإنّ قيمة النهاية عند الإقتراب من أ من جهة اليسار عليها أن تساوي قيمتها عند الإقتراب من جهة اليمين:[1]
إنّ إشارة (+) على يسار أ تعني نهاية الاقتران ق(س) عندما تقترب قيم س من العدد أ من جهة اليمين،[1] أمّا إشارة (-) على يسار العدد أ فتعني نهاية الاقتران ق(س) عندما تقترب قيم س من العدد أ من جهة اليسار.[1]
خصائص النهايات
يمكن تخمين قيمة نهاية اقتران ما، عندما تقترب قيم المتغير المستقل س من عدد حقيقي معين، باستخدام الآلة الحاسبة أو من الرسم البياني. لكن، للحصول على نتائج دقيقة وصحيحة فإنّ قيمة النهاية توجد جبريّا. وتستخدم خصائص النهايات لتسهيل هذه العملية.[2] نذكرُ فيما يلي أهم نظريّات النهايات التي تستعرضُ خصائصها:[1]
نها ق(س)س←أ= ب
نها ق(س) س←أ = أن
نها ق(س) س←أ = ب، نها هـ(س) س←أ = جـ، فإنّ:
كيفية تطبيق نظريّات النهايات
حتى نستطيع أن نفهم النظريات المكتوبة أعلاه بشكل أفضل، يجب حل الكثير من المسائل، ولتسهيل عملية تطبيق هذه النظريات، تمّت ترجمتها إلى كلمات في الجدول التالي:[3]
بالإضافة لما سبق، يمكن أيضاً اعتماد الفائدة التالية:[3]
نها ق(س) س←أ = ق(أ).
الأمثلة التالية تُوضّح كيف تُوجَدُ النهاية باستخدام النظريات:
المراجع
- ^ أ ب ت ث ج ح د.لانا كمال عرفة، إبراهيم أحمد عمايرة، د.يوسف محمد صبح، وآخرون (2017)، الرياضيات للصف الثاني عشر، الفرعين العلميّ والصناعيّ (الطبعة الأولى)، الأردن: وزارة التربية والتعليم، صفحة 10,12,13,14,19. بتصرّف.
- ↑ JAMES STEWART (2008), CALCULUS EARLY TRANSCENDENTALS, UNITED STATES : THOMSON LEARNING, Page 99. Edited.
- ^ أ ب "Section 2-4 : Limit Properties", lamar, Retrieved 2018-12-6. Edited.
- ↑ "Section 2-4 : Limit Properties- Practice Problems Solutions", lamar, Retrieved 2018-12-6. Edited.
- ↑ "Section 2-4 : Limit Properties-Practice Problems Solutions", lamar, Retrieved 2018-12-6. Edited.