-

بحث حول نظرية فيثاغورس

(اخر تعديل 2024-09-09 11:28:33 )

بحث حول نظرية فيثاغورس

ميّز العالم اليوناني فيثاغورس، المثلث قائم الزاوية عن المثلث منفرج الزاوية والمثلث حاد الزاوية، بخاصيّة سميت باسمه، حيث أثبت هذا الفيلسوف قبل 580 سنة قبل الميلاد، نظرية خاصة بالمثلث القائم، وعرفت باسم نظرية فيثاغورس، إلّا أنّ الدراسات التاريخية أثبتت أنّ الفراعنة هم أول من طبق هذه النظريّة عمليّاً، وقبل عصر العالم فيثاغورس بكثير، من خلال بناء الأهرامات.[1]

نص نظرية فيثاغورس

تعتبر هذه النظرية، من النظريات الأساسيّة في الهندسة الإقليديّة، وعلم المثلثات، وتنص النظرية؛ (في المثلث قائم الزاوية يكون مربع طول الوتر، مساوياً لمجموع مربعي طولي القائمة)، ومن خلال صياغة النص بعلاقة رياضية، فإنّ قانون نظرية فيثاغورس للمثلث قائم الزاوية (أ ب جـ) هو:[2]

  • ( طول الوتر )2 = ( طول الضلع المجاور للزاوية القائمة1 )2 +( طول الضلع المجاور للزاوية القائمة2)2.
  • (أ جـ)2 = (أ ب)2 + (ب جـ)2.

يطلق على الضلع (أ ب)، والضلع (ب جـ)، بأنهما ضلعا الزاوية القائمة، أما الضلع المقابل للزاوية القائمة وهو (أ ج)، فيطلق عليه وتر المثلث.

من خلال استخدام العلاقة الرياضيّة السابقة، الخاصّة بنظرية فيثاغورس، ومعرفة طول أي ضلعين من أضلاع المثلث القائم، فسنتمكن من إيجاد طول الضلع الثالث.

تطبيقات على نظرية فيثاغورس

فيما يلي بعض الأمثلة لتوضيح النظرية:[3]

  • مثال (1): احسب طول الضلع (أ جـ) في المثلث (أ ب جـ) القائم في (ب)، بحيث طول الضلع (أ ب) = 6سم، وطول الضلع (ب جـ) = 8سم؟
  • مثال (2): في المثلث (د هـ و) القائم في (هـ)، طول الضلع (د هـ) = 5سم، وطول الضلع (هـ و) = 12سم، أوجد طول الضلع (د و)؟
  • مثال (3): في المثلث (س ص ع) القائم في (ص)، طول الوتر (س ع) = 5سم، وطول الضلع (س ص) = 4سم، أوجد طول الضلع (ص ع)؟
  • مثال (4): في المثلث القائم (ل م ن)، أوجد قيمة الضلع (ل م)، بحيث طول (ل ن)= 15سم، وطول (م ن)= 12سم؟

لا زالت الأبحاث العلميّة قائمةً لإثبات نظرية فيثاغورس، وإظهار براهين حديثة لها، لإدخال التحديثات على النظرية، ممّا يسهّل عملية تطبيقها في الكثير من مجالات الحياة.[3]

المراجع

  1. ↑ The Editors of Encyclopaedia Britannica, "Pythagoras"، www.britannica.com, Retrieved 8-7-2018. Edited.
  2. ↑ The Editors of Encyclopaedia Britannica, "Pythagorean theorem"، www.britannica.com, Retrieved 8-7-2015. Edited.
  3. ^ أ ب "The Pythagorean theorem with examples", www.mathbootcamps.com, Retrieved 8-7-2018. Edited.